CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, Montana State University, Bozeman, Montana 59715

The Crystal and Molecular Structure of Tetranitratobis(triphenylphosphine oxide)cerium(IV)

By MAZHAR-UL-HAQUE, C. N. CAUGHLAN,* F. A. HART, AND R. VANNICE

Received December 8, 1969

The crystal and molecular structure of the new complex tetranitratobis(triphenylphosphine oxide) cerium(IV) $[Ce(NO_3)_{4-1}]$ ${OP(C_{8}H_{\delta})_{\delta}}$ has been determined by single-crystal X-ray diffraction techniques. The crystals are monoclinic, space group $P2_1/n$, with unit cell dimensions a = 13.908(8), b = 17.589(9), c = 16.476(6) Å, and $\beta = 91.10(4)^\circ$, and four molecules per unit cell. The data were collected on a diffractometer. The structure was solved by the heavy-atom technique. Positional and anisotropic thermal parameters have been refined by block-diagonal least-squares methods to a final R value, for 2868 observed reflections, of 0.047. Cerium is ten-coordinated to four bidentate nitrate groups and two oxygen atoms from triphenylphosphine oxide. The bond distances and angles are discussed. The isostructural thorium compound $Th(NO_3)_4 \{OP(C_8H_5)_3\}_2$ is also described.

Introduction

The 4f and 5f transition elements, although almost entirely restricted to coordination with oxygen, nitrogen, and the halogens, form complexes having a large variety of coordination numbers and an even larger variety of coordination polyhedra.1 The phosphoryl group, as a substituted phosphine oxide R₃PO or as an organic phosphate (RO)₃PO, is particularly notable for its ready formation of complexes with these metal ions.^{2,3} This property has been much investigated in connection with solvent-extraction procedures⁴ but the only structures established by X-ray analysis are apparently dinitratobis(triethyl phosphate)dioxouranium-(VI) $[UO_2(NO_3)_2 {OP(OC_2H_5)_3}_2]^5$ and trinitratoethanolbis(triphenylphosphine oxide)samarium (III) [Sm(NO₃)₃- $C_2H_5OH(OP(C_6H_5)_3)_2]$,⁶ having eight- and nine-coordination, respectively.

We have therefore prepared tetranitratobis(triphenylphosphine oxide)cerium(IV) and the analogous thorium compound and now report the crystal structure of the cerium complex. Comparison of X-ray powder patterns indicated that the thorium complex is isostructural.

The mode of coordination of the nitrate ion, and particularly the relation between this and its infrared spectrum, has been the subject of much discussion.7 It is now evident that the bidentate (rather than monodentate) nitrate ion is normal in complexes with 4f and 5f transition metals and reasonably common in complexes with d transition metals; the presently reported structures provide examples of the ion remaining bidentate even in a sterically rather crowded situation.

Experimental Section

Tetranitratobis(triphenylphosphine oxide)cerium(IV).--Am-

monium hexanitratocerate(IV) (0.500 g) in acetone (10 ml) was treated with triphenylphosphine oxide (0.507 g, 2 mol) in acetone (5 ml). The mixture was filtered from a white precipitate (NH4NO3) which immediately formed and the solvent was removed under reduced pressure. The sticky crystalline residue, which smelled of nitric acid, was recrystallized from acetonitrile giving 0.13 g of orange crystals, mp 237-239° dec. Crystals for X-ray analysis were obtained from benzene.

Reduction to the cerous state occurs in solution, recrystallization being attended with considerable loss, but the solid is stable in air. Anal. Calcd for C₈₆H₃₀CeN₄O₁₄P₂: C, 45.8; H, 3.2; N, 5.9. Found: C, 45.7; H, 3.2; N, 5.8. The compound is a nonelectrolyte at $3.3 \times 10^{-4} M$ concentration in acetonitrile.

Tetranitratobis(triphenylphosphine oxide)thorium(IV).-Thorium nitrate hexahydrate (1.00 g) in acetone (10 ml) was treated with triphenylphosphine oxide (0.954 g, 2 mol) in acetone (10 ml) and the combined solutions were evaporated to dryness under reduced pressure. The sticky crystalline residue was extracted with three 15-ml portions of boiling benzene, and the combined extracts were filtered and concentrated to 20 ml by boiling. Well-formed crystals (1.06 g) were deposited and collected, mp 262-266°. Anal. Calcd for $C_{36}H_{30}N_4O_{14}P_2Th$: C, 41.7; H, 2.9; N, 5.4. Found: C, 42.0; H, 3.0; N, 5.45. The compound is a nonelectrolyte at $3.3 imes 10^{-4}$ M concentration in acetonitrile.

A crystal of $Ce(NO_3)_4(OP(C_6H_5)_3)_2$ of approximate dimensions $0.27 \times 0.67 \times 0.75$ mm was used for collection of X-ray data. The crystal was bounded by {001} faces perpendicular to the short dimension and by all forms of $\{101\}$, $\{\overline{1}01\}$, $\{1\overline{1}0\}$, $\{0\overline{1}0\}$. It was mounted on the b axis for data collection. Oscillation, Weissenberg, and precession X-ray photographs showed systematic absences $h + l \neq 2n$, for h0l reflections; $k \neq 2n$, for 0k0reflections, uniquely defining space group $P2_1/n$. Cell dimensions were obtained by least-squares refinement of 18 values of 2θ determined on the diffractometer. (λ (Mo K α) 0.7107 Å).

Crystal Data.—Ce(NO₃)₄{OP(C₆H₅)₃}₂, mol wt 944.51, is monoclinic with space group $P2_1/n$, a = 13.908 (8), b = 17.589 (9), c = 16.476 (6) Å, $\beta = 91.10$ (4)°, V = 4029.7 Å³, $d_m =$ 1.562 (5) g cm⁻³ (by flotation in a mixture of carbon tetrachloride and chloroform), $d_c = 1.56$ g cm⁻³, Z = 4, $\mu = 13.56$ cm⁻¹ for Mo K α radiation (λ 0.7107 Å), and F(000) = 1896.

The intensities of 3775 reflections were measured on a General Electric XRD-5 diffractometer using a θ -2 θ scan technique, scanning across the peak for 60 sec and counting the background on each side of the peak for 30 sec. Zirconium-filtered molybdenum radiation (λ 0.7107 Å) was used. The scan rate was 2.0°/min, the takeoff angle being 4.0°. Some 2868 reflections were considered observed using the criteria $F_{
m o} \geqslant 2\sigma(F_{
m o})$, where σ was determined from counter statistics. The intensity data were reduced to Fo's using a computer program of Ahmed and Saunder-

^{*} To whom correspondence should be addressed.

⁽¹⁾ E. L. Muetterties and C. M. Wright, Quart. Rev., Chem. Soc., 21, 109, (1967).

⁽²⁾ P. Gans and B. C. Smith, J. Chem. Soc., 4172 (1964).

⁽³⁾ D. R. Cousins and F. A. Hart, J. Inorg. Nucl. Chem., 30, 3009 (1968). (4) J. R. Parker and C. V. Banks, ibid., 27, 583 (1965).

⁽⁵⁾ J. E. Fleming and H. Lynton, Chem. Ind. (London), 1415 (1960). (6) F. R. Cousins and M. B. Hursthouse, personal communication.

⁽⁷⁾ C. C. Addison and D. Sutton, Progr. Inorg. Chem., 8, 195 (1967).

ATOMIC COORDINATES WITH THEIR STANDARD DEVIATIONS IN PARENTHESES							
Atom	x	<i>y</i>	z	Atom	x	У	z
Ce(1)	0.0220(1)	0.1554(1)	0.1963(1)	C(30)	0.4383 (9)	0.0337(7)	0,3831 (8)
P(2)	0.2816(3)	0.1853(2)	0.2476(2)	C(31)	0.4162(11)	-0.0345(7)	0.3480 (9)
P(3)	-0.2252(3)	0.1038(2)	0.2632(2)	C(32)	0.3543(11)	-0.0372(6)	0.2834(9)
O(4)	0.1788(5)	0.1687(4)	0.2179(5)	C(33)	0.3136 (9)	0.0286(7)	0.2528 (8)
O(5)	-0.1274(5)	0.1260(4)	0.2301(4)	C(34)	0.2857 (8)	0.2569(6)	0.3270 (7)
O(6)	0.0254(7)	0.0150(4)	0.2061(5)	C(35)	0.2357(10)	0.2401(7)	0.3978 (7)
O(7)	0.0494(8)	-0.0501(5)	0.3167(6)	C(36)	p.2332 (11)	0.2948(8)	0.4574 (8)
O(8)	0.0564(6)	0.0736(4)	0.3168(5)	C(37)	0.3846(10)	0.3598 (8)	0.4497 (8)
N(9)	0.0425(7)	0.0106(5)	0.2806 (6)	C(38)	0.3328(10)	0.3751(7)	0.3843 (8)
O(10)	0.0540(7)	0.2896(4)	0.2378(5)	C(39)	0.3333 (8)	0.3232(6)	0.3203 (7)
O(11)	-0.0063 (8)	0.2172(5)	0.3262(5)	C(40)	-0.2904(8)	0.0499(6)	0.1845(7)
O(12)	0.0232(8)	0.3364(5)	0.3556 (5)	C(41)	-0.2411(10)	0.0037(7)	0.1295 (8)
N(13)	0.0200(8)	0.2829(6)	0.3081 (6)	C(42)	-0.2903(10)	-0.0391(7)	0.0746 (8)
O(14)	0.1159 (5)	0.0965(4)	0.0861(5)	C(43)	-0.3861(10)	-0.0358(8)	0.0721 (8)
O(15)	-0.0392(6)	0.1009(4)	0.0695(4)	C(44)	-0.4385(10)	0.0055(9)	0.1232(9)
O(16)	0.0528(7)	0.0637(5)	-0.0293(5)	C(45)	-0.3886(9)	0.0491(8)	0.1811 (9)
N(17)	0.0459(7)	0.0863(5)	0.0402 (5)	C(46)	-0.2881(8)	0.1903(6)	0.2883(7)
O(18)	0.0566(6)	0.2445(4)	0.0829 (4)	C(47)	-0.3488(9)	0.1948(7)	0.3573 (7)
O(19)	-0.0914(6)	0.2477(4)	0.1280(5)	C(48)	-0.3951(10)	0.2631(7)	0.3746 (8)
O(20)	-0.0492(7)	0.3215(4)	0.0325(5)	C(49)	-0.3889(9)	0.3217(7)	0.3237(8)
N(21)	-0.0283(7)	0.2712(5)	0.0805(5)	C(50)	-0.3352(10)	0.3176(7)	0.2564(8)
C(22)	0.3481(8)	0.2160(6)	0.1615(7)	C(51)	-0.2824(10)	0.2531(7)	0.2367(8)
C(23)	0.2995(10)	0.2282(9)	0.0878(8)	C(52)	-0.2156 (8)	0.0444(6)	0.3540(7)
C(24)	0.3540(10)	0.2459(9)	0.0231(9)	C(53)	-0.1475(9)	0.0686(7)	0.4115(8)
C(25)	0.4482(11)	0.2557(8)	0.0284(8)	C(54)	-0.1400(11)	0.0255(9)	0.4839(8)
C(26)	0.4975(11)	0.2466(9)	0.0981(9)	C(55)	-0.1983(12)	-0.0344(8)	0.4948(9)
C(27)	0.4444 (9)	0.2248(8)	0.1651 (8)	C(56)	-0.2632(12)	-0.0579(8)	0.4399(9)
C(28)	0.3369 (8)	0.0990(6)	0.2901(7)	C(57)	-0.2725(10)	-0.0184(8)	0.3686 (8)
C(29)	0.4028 (9)	0.1025(7)	0.3543(7)				
		Calculate	d Positional Para	meters for Hydrog	en Atoms		
H(1)-C(23)	0 2251	0.2202	0.0811	H(16) - C(41)	-0.1646	0.0019	0 1314
H(2)-C(24)	0.3191	0.2534	-0.0337	H(17)-C(42)	-0.2517	-0.0728	0.0324
H(3)-C(25)	0 4865	0.2712	-0.0239	H(18) - C(43)	-0.4224	-0.0677	0.0291
H(4)-C(26)	0.5733	0.2548	0 1015	H(19) - C(44)	-0.5128	0.0069	0.1195
H(5)-C(27)	0 4814	0.2183	0.2199	H(20)-C(45)	-0.4275	0.0822	0.2220
H(6)-C(29)	0 4217	0 1538	0.3818	H(20) = C(47)	-0.3549	0.1486	0.3958
H(7)-C(30)	0 4860	0.0365	0 4325	H(22)-C(48)	-0.4366	0.2656	0.4253
H(8)-C(31)	0 4461	-0.0845	0.3695	H(23)-C(49)	-0.4272	0.3704	0.3374
H(9)-C(32)	0.3358	-0.0888	0.2564	H(24)-C(50)	-0.3299	0.3640	0.2186
H(10)-C(33)	0.2657	0.0250	0.2030	H(25)-C(51)	-0.2406	0.2505	0.1846
H(11)-C(35)	0.1996	0.1880	0.4053	H(26) - C(53)	-0.1055	0.1156	0.4030
H(12)-C(36)	0.1948	0.2831	0.5109	H(27)-C(54)	-0.0901	0.0420	0.5279
H(13)-C(37)	0.2828	0.3992	0.4967	H(28)-C(55)	-0.1907	-0.0647	0.5489
H(14) C(38)	0.3671	0.4270	0.3786	H(29)-C(56)	-0.3056	-0.1065	0 4502
H(15) - C(39)	0.3723	0.3342	0.2677	H(30)-C(57)	-0.3242	-0.0360	0.3250
(-0) -0(00)	3.0.20	0.0012	0.2011		0.0212	0.0000	0.0200

TABLE I TOMIC COORDINATES WITH THEIR STANDARD DEVIATIONS IN PARENTHESES

son.⁸ Absorption corrections were made using a program of Meulenaer and Tompa.⁹ The transmission factors ranged from 0.678 to 0.835. The form factors were taken from the literature,¹⁰ including the anomalous term $\Delta f'$ for the Ce atom.

Structure Analysis and Refinement.—The positions of the cerium atoms and two phosphorus atoms were evident from the Harker section and the three-dimensional Patterson map. A Fourier synthesis phased on these atomic positions showed chemically reasonable positions for an additional 25 atoms and the next three-dimensional Fourier maprevealed all 57 nonhydrogen atoms.

Refinement proceeded normally using the block-diagonal leastsquares approximation and converged initially at an R of 0.081, varying positional and individual isotropic temperature factors

for all nonhydrogen atoms. Inclusion of anisotropic temperature factors reduced the R to 0.055. A difference map showed a number of peaks about 0.3 e⁻/Å³ above background, suggesting positions for all but two hydrogen atoms. The final refinement converged at R = 0.047 (weighted R = 0.056) and included each hydrogen atom in its calculated position with an assigned temperature factor 0.5 Å² greater than that of the carbon atom to which it is bonded. (The isotropic temperature factors used for the carbon atoms were those obtained just previous to the final refinement, when these were converted to anisotropic values.) All parameter shifts were less than one-tenth the standard deviation, indicating completion of refinement. A final difference map showed no electron density exceeding $\pm 0.5 \text{ e}^{-}/\text{\AA}^{3}$, the maximum being near the cerium atoms. Throughout the refinement reflections were weighted in accordance to counting statistics using the scheme discussed by Stout and Jensen.11 There appeared to be no systematic variation of mean $w | F_{\circ} F_{\rm c}|^2$ with $\lambda^{-1} \sin \theta$ or $|F_{\rm o}|$, indicating relative correctness of the weighting scheme.

⁽⁸⁾ NRC-2, data reduction program, written by F. R. Ahmed and C. P. Saunderson. NRC-8, Fourier program, and NRC-10, structure factors least-squares block-diagonal program, were written by F. R. Ahmed, National Research Council, Ottawa, Ontario, Canada. These programs are adapted for the SDS Sigma-7 computer. The rest of these programs are written by C. N. Caughlan, G. D. Smith, and E. L. Enwall.

⁽⁹⁾ J. D. Meulenaer and H. Tompa, Acta Crystallogr., 19, 1014 (1965).

^{(10) &}quot;International Tables for X-Ray Crystallography," Vol. III, Kynoch Press, Birmingham, England, 1962, Table 3.3.1A, p 202 and Table 3.3.1B, p 211.

⁽¹¹⁾ G. H. Stout and L. H. Jensen, "X-Ray Structure Determination," Macmillan, New York, N. Y., 1968, p 457. The constant for instrumental instability was 0.02.

	Anisotropic	THERMAL PARAM	ETERS WITH THEIR	r Standard Deviati	ions in Parenthese	s
Atom	$\beta_{11}{}^a$	\$ 22	\$83	\$ 28	\$ 18	β_{12}
Ce(1)	0.0047(1)	0.0027(1)	0.0025(1)	-0.0001(1)	-0.0009(1)	0.0002(1)
P(2)	0.0045(3)	0.0038(2)	0.0031(2)	0.0002(3)	-0.0013(3)	-0.0007(3)
P(3)	0.0047(3)	0.0041(2)	0.0031(2)	0.0009(4)	-0.0002(4)	-0.0004(4)
O(4)	0.0028(6)	0.0042(4)	0.0076(5)	0.0025(8)	0.0009 (9)	-0.0002(8)
O(5)	0.0044(6)	0.0044(4)	0.0020(3)	0.0002(5)	-0.0008(8)	0.0009(7)
O(6)	0.0118(8)	0.0038(3)	0.0036(4)	-0.0007(7)	-0.0024(10)	0.0016(11)
O(7)	0.0210(13)	0.0057(5)	0.0069(6)	0.0043 (9)	-0.0045(15)	0.0050(13)
O(8)	0.0089 (8)	0.0047(4)	0.0047(5)	0.0029(7)	-0.0054(10)	0.0001(9)
N(9)	0.0076 (9)	0.0038(5)	0.0069(7)	0.0006 (9)	0.0004(13)	0.0036(11)
O(10)	0.0202(12)	0.0016(3)	0.0049(5)	0.0001(6)	-0.0014(13)	-0.0006(10)
O(11)	0.0205(12)	0.0048(4)	0.0036(5)	-0.0037(7)	0.0076 (13)	-0.0055(13)
O(12)	0.0272(15)	0.0046(5)	0.0065(6)	-0.0070(9)	0.0022(15)	0.0015(15)
N(13)	0.0114(12)	0.0050(5)	0.0052(6)	-0.0018(10)	-0.0015(15)	0.0036 (12)
O(14)	0.0051(7)	0.0053(4)	0.0051(5)	-0.0027(7)	0.0013 (9)	0.0005 (9)
O(15)	0.0077 (7)	0.0030(3)	0.0033(4)	-0.0016(6)	-0.0031(9)	-0.0010(8)
O(16)	0.0145(10)	0.0054(5)	0.0038(5)	-0.0019(7)	0.0008(11)	-0.0042(11)
N(17)	0.0107(11)	0.0033(5)	0.0036(5)	-0.0007(8)	0.0003(12)	-0.0022(11)
O(18)	0.0070(7)	0.0038(4)	0.0039(4)	0.0024(6)	-0.0002(9)	0.0027(9)
O(19)	0.0069(7)	0.0048(4)	0.0053(5)	0.0049(7)	0.0010(10)	0.0021(9)
O(20)	0.0123(9)	0.0048(5)	0.0057(5)	0.0035(8)	-0.0036(11)	0.0035(10)
N(21)	0.0109 (10)	0.0022(4)	0.0023(5)	0.0013(7)	-0.0052(11)	0.0015(10)
C(22)	0.0040(10)	0.0047(6)	0.0035(7)	0.0020(10)	0.0001 (13)	-0.0013 (12)
C(23)	0.0092 (14)	0.0118(11)	0.0050(8)	0.0086(15)	-0.0027(18)	-0.0089 (20)
C(24)	0.0089(14)	0.0135(12)	0.0060 (9)	0.0081(17)	-0.0073(19)	-0.0082(22)
C(25)	0.0153(18)	0.0099(10)	0.0024(7)	0.0032(14)	0.0009(18)	-0.0030 (22)
C(26)	0.0096(15)	0.0138(12)	0.0056(10)	0.0064(17)	0.0076 (19)	0.0049 (22)
C(27)	0.0057(12)	0.0112(10)	0.0046(8)	0.0041(14)	-0.0023(16)	0.0053(18)
C(28)	0.0049(10)	0.0029(6)	0.0052(7)	0.0014(10)	0.0024(14)	0.0006(12)
C(29)	0.0070(11)	0.0044(6)	0.0041(7)	0.0004(11)	-0.0061(15)	0.0003(14)
C(30)	0.0086(13)	0.0058(7)	0.0052(8)	0.0025(12)	-0.0050(17)	0.0036(16)
C(31)	0.0162(18)	0.0045(7)	0.0092(11)	0.0010(14)	-0.0086(22)	0.0053(19)
C(32)	0.0162(17)	0.0011(5)	0.0119(11)	-0.0012(12)	-0.0070(23)	0.0035(16)
C(33)	0.0086(13)	0.0043(6)	0.0055(8)	-0.0002(11)	-0.0036(16)	-0.0024(15)
C(34)	0.0046(10)	0.0030(5)	0.0040(7)	-0.0014(9)	-0.0017(13)	0.0015(12)
C(35)	0.0109(14)	0.0049(7)	0.0039(7)	-0.0004(11)	0.0002(16)	-0.0016(16)
C(36)	0.0123(15)	0.0100(9)	0.0031(7)	-0.0038(14)	-0.0002(17)	-0.0029(19)
C(37)	0.0123(14)	0.0064(8)	0.0054(8)	-0.0052(14)	-0.0015(17)	-0.0018(18)
C(38)	0.0125(15)	0.0042(7)	0.0066 (9)	-0.0055(12)	-0.0034(18)	-0.0008(15)
C(39)	0.0069(11)	0.0023(6)	0.0054(7)	0.0005(10)	-0.0006(14)	-0.0012(12)
C(40)	0.0050(10)	0.0029(5)	0.0038(7)	0.0000 (9)	-0.0020(13)	-0.0025(12)
C(41)	0.0086(13)	0.0037(6)	0.0059 (8)	0.0002(11)	0.0007(16)	0.0039(14)
C(42)	0.0112(14)	0.0056(7)	0.0059(9)	-0.0042(13)	-0.0013(18)	-0.0062(17)
C(43)	0.0116(14)	0.0071(8)	0.0042(8)	-0.0047(13)	-0.0010(17)	-0.0048(18)
C(44)	0.0079(14)	0.0100(10)	0.0079(10)	-0.0034(16)	-0.0094(19)	-0.0085(19)
C(45)	0.0062(12)	0.0079(9)	0.0083(10)	-0.0061(15)	0.0034(17)	0.0018(17)
C(46)	0.0036(9)	0.0037(6)	0.0036(6)	-0.0009(9)	-0.0019(12)	
C(47)	0.0071(12)	0.0058(7)	0.0046 (8)	0.0013(11)	-0.0017(15)	-0.0025(14)
C(48)	0.0099(13)	0.0043(7)	0.0049(8)	-0.0016(11)	0.0033(16)	0.0022(15)
C(49)	0.0096(13)	0.0040(7)		0.0000(11)	0.0029(17)	0.0040(14)
C(50)	0.0131(15)	0.0046(7)	0.0067 (9)	0.0037(12)	0.0057 (19)	
	0.0100(13)	0.0043(0)	0.0048(8)	0.0000(10)	0.0027(10)	0.0019(10)
C(52)	0.0054(10)	0.0040(0)	0.0032(6)	0.0009(10)	-0.0017(13)	0.0024(13)
C(53)	0.0000 (11)	0.0003 (8)	0.0002(8)	0.0040(13)	-0.0011(10)	-0.0024(10)
C(34)	0.0102(10)	0.0112(10)	0.0034(8)	0.0074(14)	-0.0073(18)	-0.0051(21)
C(56)	0.0197 (20)	0,0004(8) 0,0059(9)	0.0077(10)	0.0097(10)	-0.0020(23) -0.0051(23)	-0.0112(21) -0.0061(20)
C(50)	$0.020\pm(19)$ 0.0070(19)	0.0002(0)	0.0072(10)	0.0078(14)	-0.0001(20) -0.0016(19)	= 0.0001 (20) = 0.0028 (16)
$\mathbf{C}(0)$	0.0019(10)	0.0000(1)	0.0000(10)	0.0021(14)		0.0000(10)

TABLE II SOTROPIC THERMAL PARAMETERS WITH THEIR STANDARD DEVIATIONS IN PARENTHESI

^a The form of anisotropic thermal ellipsoid is $\exp\left[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + \beta_{23}kl + \beta_{13}hl + \beta_{12}hk)\right]$.

Results and Discussion

The final atomic parameters and the anisotropic thermal parameters are given in Tables I and II. Tables III and IV give the interatomic distances and valence angles. The final observed and calculated structure factors are listed in Table V. Figure 1 shows the structure and Figure 2 the coordination of cerium. The Coordination Polyhedron.—In these complexes, Ce(IV) and Th(IV) are ten-coordinated, two oxygen atoms from each nitrate group being bonded to cerium, together with two oxygen atoms from triphenylphosphine oxide molecules. Ce(IV) and Th(IV), which in their reported stereochemistry show a mutual resemblance, are typically eight-coordinated,¹² often in a (12) S. J. Lippard, *Progr. Inorg. Chem.*, **8**, 109 (1967).

LABLE 111							
INTERATOMIC	Distances	WITH	Their	STANDARD			
Dev	IATIONS IN	PARE	THESE	s			

TABLE IV

Bond Angles with Their Standard Deviations in Parentheses

Distance, A	Atoms	Distance, Å
2.216(7)	C(24)-C(25)	1.32(2)
2.222(7)	C(25)-C(26)	1.34(2)
2.475(7)	C(26)-C(27)	1.39(2)
2.490 (8)	C(28) - C(29)	1.39(2)
2.495(7)	C(28)-C(33)	1.42(2)
2.440(8)	C(29)-C(30)	1.39(2)
2.483(8)	C(30)-C(31)	1.36(2)
2.437(7)	C(31)-C(32)	1.36(2)
2.493(8)	C(32)-C(33)	1.38(2)
2.514(8)	C(34)-C(35)	1.40(2)
1.531(8)	C(34)-C(39)	1.35(2)
1.526(8)	C(35)-C(36)	1.38(2)
1.79(1)	C(36)-C(37)	1.36(2)
1.83(1)	C(37)-C(38)	1.31(2)
1.82(1)	C(38)-C(39)	1.40(2)
1.83(1)	C(40)-C(41)	1.41(2)
1.81(1)	C(40)-C(45)	1.37(2)
1.83(1)	C(41)-C(42)	1.35(2)
1.25(1)	C(42)-C(43)	1.33(2)
1.23(1)	C(43)-C(44)	1.34(2)
1.27(1)	C(44)-C(45)	1.40(2)
1.27(1)	C(46)-C(47)	1.43(2)
1.25(1)	C(46)-C(51)	1.40(2)
1.22(1)	C(47)-C(48)	1.40(2)
1,23(1)	C(48) - C(49)	1.33(2)
1.31(1)	C(49)-C(50)	1.35(2)
1.22(1)	C(50)-C(51)	1.39(2)
1.27(1)	C(52)-C(53)	1.39(2)
1.26(1)	C(52)-C(57)	1.38(2)
1.22(1)	C(53)-C(54)	1.42(2)
1.40(2)	C(54)-C(55)	1.34(2)
1.35(2)	C(55)-C(56)	1.33(2)
1.36(2)	C(56)-C(57)	1.37(2)
	Distance, A 2.216 (7) 2.222 (7) 2.475 (7) 2.490 (8) 2.495 (7) 2.490 (8) 2.495 (7) 2.440 (8) 2.433 (8) 2.437 (7) 2.493 (8) 2.514 (8) 1.526 (8) 1.79 (1) 1.83 (1) 1.82 (1) 1.83 (1) 1.25 (1) 1.27 (1) 1.27 (1) 1.22 (1) 1.23 (2) 1.35 (2) 1.36 (2)	Distance, AAtoms 2.216 (7) $C(24)-C(25)$ 2.222 (7) $C(25)-C(26)$ 2.475 (7) $C(26)-C(27)$ 2.490 (8) $C(28)-C(29)$ 2.495 (7) $C(28)-C(33)$ 2.440 (8) $C(29)-C(30)$ 2.483 (8) $C(30)-C(31)$ 2.483 (8) $C(32)-C(33)$ 2.443 (7) $C(31)-C(32)$ 2.493 (8) $C(32)-C(33)$ 2.493 (8) $C(32)-C(33)$ 2.514 (8) $C(34)-C(35)$ 1.531 (8) $C(34)-C(39)$ 1.526 (8) $C(35)-C(36)$ 1.79 (1) $C(36)-C(37)$ 1.83 (1) $C(40)-C(41)$ 1.82 (1) $C(38)-C(39)$ 1.83 (1) $C(40)-C(41)$ 1.81 (1) $C(40)-C(45)$ 1.83 (1) $C(41)-C(42)$ 1.25 (1) $C(42)-C(43)$ 1.23 (1) $C(43)-C(44)$ 1.27 (1) $C(46)-C(51)$ 1.22 (1) $C(47)-C(48)$ 1.23 (1) $C(48)-C(49)$ 1.31 (1) $C(49)-C(50)$ 1.22 (1) $C(50)-C(51)$ 1.22 (1) $C(52)-C(53)$ 1.26 (1) $C(52)-C(53)$ 1.26 (1) $C(52)-C(55)$ 1.35 (2) $C(55)-C(56)$ 1.36 (2) $C(56)-C(57)$

distorted square antiprism as in the tetraacetylacetonates M(CH₃COCHCOCH₃)₄ or in ceric and thorium fluorides. Dodecahedral coordination also occurs, as in the tetrakis(dibenzoylmethane) complexes, M(C6H5CO- $CHCOC_{6}H_{5})_{4}$. Eight-coordination probably occurs also in the many compounds of the type ThX_4L_4 (X = halogen, L = monodentate ligand). Nine-coordination is rare but is exemplified by NaTh₂F₉ (tricapped trigonal prism).18 Circumstantial evidence indicates possible ten-coordination in Th(NO₃)₄chdpm, where chdpm⁴ is $\{(c-C_6H_{11})_2P(O)\}_2CH_2$. Eleven-coordination occurs in $Th(NO_3)_4 \cdot 5H_2O$ with bidentate nitrate ions¹⁴ and icosahedral 12-coordination in [Mg(H₂O)₆][Th- $(NO_3)_6$ $]\cdot 2H_2O^{15}$ where the Th-O distances of 2.63 (5) Å are comparable with the 2.437 (8)-2.514 (8) Å Ce-O (nitrate) distances observed here after allowing for the decreased ionic radius of cerium (Ce⁴⁺, 0.92 Å; Th⁴⁺, 0.99 Å).

The coordination now observed in $Ce(NO_3)_4(OP-(C_6H_5)_3)_2$ cannot fairly be rationalized in terms of any semiregular polyhedron because of the very different stereochemical requirements of the NO₃ and $OP(C_6H_5)_3$ groups. It may be described as a distorted transoctahedral arrangement of two phosphoryl oxygen

Atoms	Angle, deg	Atoms	Angle, deg
O(4)-Ce(1)-O(5)	155.0(3)	Ce(1) - O(10) - N(13)	95.6(6)
O(4) - Ce(1) - O(6)	94.4(3)	Ce(1)=O(11)=N(13)	98 6 (7)
O(4) - Ce(1) - O(8)	76.1(3)	O(10) - N(13) - O(11)	114 9 (10)
O(4) - Ce(1) - O(10)	71 7 (3)	O(10) - N(13) - O(12)	120 3 (10)
O(4) = Ce(1) = O(11)	89 2 (3)	O(11) = N(13) = O(12)	124 5 (10)
O(4) = Ce(1) = O(11)	69 4 (2)	O(11) = O(14) = O(12)	124.3(10)
O(4) = Ce(1) = O(14)	100.4(0)	Ce(1) = O(14) = N(17)	90.1(0)
O(4) = Ce(1) = O(13)	120.4(3)	Ce(1) = O(15) = N(17)	95.1(6)
O(4) = Ce(1) = O(18)	81.4(3)	O(14) = N(17) = O(15)	117.0 (9)
O(4) - Ce(1) - O(19)	127.6(3)	O(14) - N(17) - O(16)	123.3(9)
O(5) - Ce(1) - O(6)	76,6(3)	O(15) - N(17) - O(16)	119.8(9)
O(5) - Ce(1) - O(8)	80.4 (3)	Ce(1) - O(18) - N(21)	93.6(6)
O(5)-Ce(1)-O(10)	108.3(3)	Ce(1) - O(19) - N(21)	93.0(6)
O(5)-Ce(1)-O(11)	73.6(3)	O(18) - N(21) - O(19)	121.2 (9)
O(5)-Ce(1)-O(14)	126.4(2)	O(18)-N(21)-O(20)	119.9(9)
O(5)-Ce(1)-O(15)	79.0(2)	O(19)-N(21)-O(20)	118,9(9)
O(5)-Ce(1)-O(18)	121.9(2)	P(2)-C(22)-C(23)	119.2 (9)
O(5)-Ce(1)-O(19)	71.4(2)	P(2)-C(22)-C(27)	121.8(9)
O(6) - Ce(1) - O(8)	50.9 (3)	C(23)-C(22)-C(27)	118.9(12)
O(6)-Ce(1)-O(10)	157.4(3)	C(22)-C(23)-C(24)	116.8(13)
O(6)-Ce(1)-O(11)	113.1 (3)	C(23)-C(24)-C(25)	123.1 (14)
O(6)-Ce(1)-O(14)	67.8 (3)	C(24)-C(25)-C(26)	122 1 (14)
O(6) - Ce(1) - O(15)	70.7 (3)	C(25)-C(26)-C(27)	116.3(14)
O(6) - Ce(1) - O(18)	132.3 (3)	C(26) = C(27) = C(22)	122 6 (13)
O(6) - Ce(1) - O(19)	133.2 (3)	P(2) = C(28) = C(29)	122.0(10) 121.4(9)
O(8) = Ce(1) = O(10)	107 3 (3)	P(2) = C(28) = C(33)	117 8 (9)
O(8) - Ce(1) - O(11)	65 8 (3)	C(29) = C(28) = C(33)	120.7(11)
O(8) - Ce(1) - O(14)	104 3 (3)	C(28) = C(29) = C(30)	116 6 (11)
O(8) - Ce(1) - O(15)	121.0(3)	C(29) - C(30) - C(31)	123.2(12)
O(8) - Ce(1) - O(18)	157.4(3)	C(30) - C(31) - C(32)	119.8 (13)
O(8) - Ce(1) - O(19)	147 0 (3)	C(31) - C(32) - C(33)	120 5 (13)
O(10) - Ce(1) - O(11)	50.9(3)	C(32) - C(33) - C(28)	119,1(11)
O(10) - Ce(1) - O(14)	120.1(3)	P(2) = C(34) = C(35)	116.4(9)
O(10) - Ce(1) - O(15)	131.6(3)	P(2) - C(34) - C(39)	123.4(9)
O(10) - C(1) - O(18)	64.8 (3)	C(35) - C(34) - C(39)	120.3(11)
O(10) - Ce(1) - O(19)	67.6(3)	C(34) - C(35) - C(36)	117.8 (12)
O(11) - Ce(1) - O(14)	157.4(3)	C(35)-C(36)-C(37)	120.2(13)
O(11) = Ce(1) = O(15)	150, 2, (3)	C(36) - C(37) - C(38)	122.0(13)
O(11) - Ce(1) - O(18)	114.4(3)	C(37)-C(38)-C(39)	119.9(12)
O(11) - Ce(1) - O(19)	89.7 (3)	C(38) - C(39) - C(34)	119.7 (11)
O(14) - Ce(1) - O(15)	52.4(2)	P(3)-C(40)-C(41)	121.0(9)
O(14) - Ce(1) - O(18)	66, 6 (3)	P(3) - C(40) - C(45)	121.0(9)
O(14) - Ce(1) - O(19)	106.1 (3)	C(41)-C(40)-C(45)	117.9(11)
O(15) - Ce(1) - O(18)	80.0(2)	C(40) - C(41) - C(42)	120.4(12)
O(15) - Ce(1) - O(19)	70.4(2)	C(41) - C(42) - C(43)	119.3 (13)
O(18) - Ce(1) - O(19)	52.2(2)	C(42)-C(43)-C(44)	124.1 (13)
$O(4) - \dot{P}(2) - C(22)$	107.3 (5)	C(43) - C(44) - C(45)	117.2 (13)
O(4) - P(2) - C(28)	110.2(5)	C(44) - C(45) - C(40)	121.1(13)
O(4) = P(2) = C(34)	112.3(5)	P(3)-C(46)-C(47)	121.6 (8)
C(22) - P(2) - C(28)	109.4(5)	P(3)-C(46)-C(51)	119.5 (9)
C(22) = P(2) = C(34)	110.6(5)	C(47) - C(46) - C(51)	118.8 (10)
C(28) = P(2) = C(34)	106.9 (5)	C(46) - C(47) - C(48)	119.4 (11)
O(5) = P(3) = O(40)	108 1 (5)	C(47) - C(48) - C(49)	120.2(12)
O(5) = P(3) = C(46)	107.8 (5)	C(48) - C(49) - C(50)	121.2(12)
O(5) - P(3) - C(52)	112 8 (5)	C(49) = C(50) = C(51)	122.6(12)
C(40) = P(3) = C(46)	111 2 (5)	C(50) - C(51) - C(46)	117.7(11)
C(40) = P(3) = C(52)	108.1 (5)	P(3) = C(52) = C(53)	114.9 (9)
C(46) = P(3) = C(52)	108.8 (5)	P(3) - C(52) - C(57)	124.5(9)
$C_{e}(1) = O(4) = P(2)$	169.2 (5)	C(53) - C(52) - C(57)	120.6(11)
$C_{e}(1) = O(5) = P(3)$	173 2 (4)	C(52) = C(53) = C(54)	116.6(11)
Ce(1) = O(6) = N(9)	97.4 (6)	C(53) - C(54) - C(55)	119.8 (13)
Ce(1) = O(8) = V(9)	95.9(6)	C(54) - C(55) - C(56)	123.9 (15)
O(6) - N(9) - O(7)	122.9(10)	C(55)-C(56)-C(57)	118,4 (14)
O(6) - N(9) - O(8)	115.7 (9)	C(56)-C(57)-C(52)	120.7 (13)
O(7) - N(9) - O(8)	121,4(10)	- , , , - , - , - , - , - , - ,	

atoms and four nitate groups (each NO₈ group being considered to occupy a single coordination position¹⁶). The phosphoryl oxygen atoms, however, are not collinear with the Ce atom but subtend 155.0 (3)°, while the four nitrate ions have their planes inclined in the approximate shape of a four-bladed propeller. The Ce–O distances are 2.437 (8)–2.514 (8) Å for the nitrate group oxygens and significantly shorter, 2.216 (7) and 2.222 (7) Å, for the phosphoryl Ce–O contacts. This short bond is attained despite the fact that it leads to

⁽¹³⁾ W. H. Zachariasen, Acta Crystallogr., 2, 390 (1949).

⁽¹⁴⁾ T. Ueki, A. Zalkin, and D. H. Templeton, ibid., 20, 836 (1966).

⁽¹⁵⁾ S. Scavnicar and B. Prodic, ibid., 18, 698 (1965).

⁽¹⁶⁾ F. A. Cotton, D. M. L. Goodgame, and R. H. Soderberg, Inorg. Chem., 2, 1165 (1963).

Figure 1.—The structure of tetranitratobis(triphenylphosphine oxide)cerium(IV).

Figure 2.—Coordination of cerium.

considerable ligand-ligand repulsion in the coordination sphere; thus $O_4-O_{14} = 2.65$ (2) Å and $O_5-O_{11} =$ 2.80 (2) Å, and some nitrate-nitrate contacts are also rather unfavorable, e.g., $O_8-O_{11} = 2.68$ (2) Å. This latter close approach may be caused by the nonlinearity of the O₅-Ce-O₄ system, the two nitrate groups to which O₈ and O₁₁ belong being twisted into closer mutual contact by the relatively close approach of the phosphoryl oxygen atoms ($O_5-O_{11} = 2.80$ (2) Å; $O_4-O_{10} =$ 2.77 (2) Å). The cause of this nonlinearity is of interest. It may be of electrostatic origin, the 25° distortion leading to a lower ligand-ligand repulsive potential energy term over the complex as a whole. It is also possible that the distortion affords better π bonding between the filled P–O π system and the empty 5d orbitals of Ce(IV), as in a linear situation good overlap would be limited to d_{xz} and d_{yz} ; the infrared evidence discussed below supports the possibility of such π bonding. The P-O-Ce systems are nearly linear (P₃-O₅-Ce = 173.2 (4)°; P₂-O₄-Ce = 169.2 (5)°); distortion of a similar system has been observed before.¹⁷ It seems doubtful whether intermolecular packing forces would be sufficiently great to cause these distortions.

Nitrate Groups .--- In each nitrate group the N-O distances differ only slightly from each other and average to 1.25 (3) Å. This may be compared with 1.218 (4) Å found in sodium nitrate,¹⁸ 1.268 (21) Å in lead nitrate,¹⁹ 1.21 (1) Å in triethylenediaminenickel(II) nitrate,²⁰ and an average distance of 1.24 (1) and 1.25 (1) Å found in rubidium uranyl nitrate²¹ and uranyl nitrate hexahydrate,²² respectively. The bond angles in the nitrate groups vary slightly from the ideal value of 120°, apparently the result of coordination with cerium. For the four nitrate groups the angles have the ranges 115.7 (9)-122.9 (9), 114.9 (9)-124.5 (9), 117.0 (9)-123.3 (9), and 118.9 (9)-121.2 (9)°. Two nitrates show the largest deviations but all are greater than four or five standard deviations. Similar variations are observed in the nitrate groups in rubidium uranyl nitrate²¹ (117.5 (9)–121.2 (9)°) and uranyl nitrate hexahydrate²² (115.6 (5)-122.2 (2) and 114.6 (5)- $122.7 (2)^{\circ}$). All the nitrate groups are nearly planar. Table VI shows least-squares planes and dihedral angles between the nitrate planes.

Triphenylphosphine Oxide Groups.—The P–O distances of 1.531 (8) and 1.526 (8) Å are longer than normal phosphoryl bonds but somewhat shorter than esterified P–O bonds. Other bond lengths and angles do not differ significantly from expected values.

There are 15 intermolecular distances below 3.5 Å varying from 2.86 (2) to 3.45 (2) Å. The closest contacts are between O(15) and O(16), 2.98 (2) Å, O(16) and O(16), 2.86 (2) Å, and O(16) and N(17), 2.98 (2) Å, all of which are between atoms in one nitrate group and those in another related by a center of symmetry. All these distances are greater than the required van der Waals clearances. Cerium and phosphorus do not have any contacts less than 4.0 Å.

Infrared Spectra.—The vibrational frequencies of the PO and NO₃ groups in these compounds are as follows (cm⁻¹). Ce(NO₃)₄(OP(C₆H₅)₈)₂: NO₃, 1262 (s, b) (ν_1), 1023 (m) (ν_2), 1538 (s, b) (ν_4), 803 (s) (ν_6); PO, 1048 (s). Th(NO₃)₄(OP(C₆H₅)₃)₂: NO₃, 1265 (s, b) (ν_1), 1017 (m) (ν_2), 1540 (s, b) (ν_4), 806 (s) (ν_6); PO 1059 (s) (Nujol mulls and Perkin-Elmer 337). In addition there is absorption, perhaps partly due to the PO group, at 1134 cm⁻¹ (Th compound) and 1120 cm⁻¹ (Ce), but these assignments are uncertain as free OP-(C₆H₅)₃ itself absorbs at 1119 cm⁻¹, this peak being enhanced in the complexes.

These values may be compared with those obtained²³ (17) F. A. Cotton and R. H. Soderberg, J. Amer. Chem. Soc., **85**, 2402 (1963).

- (18) R. L. Sass, R. Vidale, and J. Donohue, Acta Crystallogr., 10, 567 (1957).
- (19) W. C. Hamilton, ibid., 10, 103 (1957).
- (20) L. N. Swink and M. Atoji, *ibid.*, **13**, 639 (1960).
 (21) G. A. Barclay, T. M. Sabine, and J. C. Taylor, *ibid.*, **19**, 205 (1965).
- (21) G. A. Barclay, T. M. Sabine, and J. C. Taylor, *ibid.*, 19, 205
 (22) J. C. Taylor and M. H. Mueller, *ibid.*, 19, 536 (1965).
- (23) D. R. Cousins and F. A. Hart, J. Inorg. Nucl. Chem., 29, 1745 (1967).

TABLE V Observed and Calculated Structure Factors

h L 2 4 6 2 2 7 6 6 5 1 10 5 7 7 8 1 10 7 7 7 9 1 1 2 1 2 7 4 5 6 7 8 9 10 1 2 7 1 5 7 7 1 1 2 2 5 7 8 1 10 7 7 7 9 1 2 2 7 6 6 6 7 1 7 1 1 2 7 4 5 6 7 8 9 10 1 2 7 1 5 7 7 1 1 2 2 5 7 8 1 10 7 7 7 8 1 2 7 7 5 5 1 10 7 7 7 8 1 2 7 7 5 5 1 10 7 7 7 8 1 2 7 7 5 5 1 10 7 7 7 8 1 2 7 7 5 5 1 10 7 7 7 8 1 2 7 7 5 5 1 10 7 7 7 8 1 2 7 7 5 5 1 10 7 7 7 8 1 10 7 7 8 1 10 7 7 7 8 1 10 7 7 7 8 1 10 7 7 8 1 10 7 7 7 8 1 10 7 7 7 8 1 10 7 7 7 8 1 10 7 7 8 1 10 7 7 7 8 1 10 7 7 7 8 1 10 7 7 7 8 1 10 7 7 7 8 1 10 7 7 7 8 1 10 7 7 7 8 1 10 7 7 7 8 1 10 7 7 7 8 1 10 7 7 7 8 1 10 7 7 7 8 1 10 7 7 7 8 1 10 7 7 7 8 1 10 7 7 7 8

h - 4577677800011727345545740580584453805854611120320005145322701757757757754545300017375229445420551047735914011120224454580811210111 - 99077777885444773945545855168712234577405975516808171722559277524774531757757724572287522977008545122744542 - 990777778854447739455452775095516808177720011777200475452277245728872289700475512297004735920073577210017 - 99077780047558544453895168712234557740597551548081777200117774552777245757724572287531245752297700484512274458210017120072359120772310017 - 4577780040011727345445774005000000000000000000000000000
$ \begin{bmatrix} r_{u} \\ \\ \\ r_{u} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
h $ r_{0} $ $ r_{0} r_{0} $ $ r_{0} r_{0} $ $ r_{0} r_{0} $
$ \begin{bmatrix} v_{-} \\ 0 \\ v_{-} v_{-} \\ 0 \\ v_{-} \\ 0 \\ $
h $r_1 = r_2 = r_1 = r_2 = r_1 = r_2 = r_2 = r_2 = r_1 = r_2 = r_$
$ \begin{bmatrix} n \\ -1 \end{bmatrix} = \begin{bmatrix} $
$ \begin{array}{ c c } & c c & c c \\ \hline c & c c \\ \hline c & c c & c c \\ $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c_1 & c_1 & $
Image: Second
$ \begin{bmatrix} \mu_{1} & \mu_{2} & \mu_{3} & \mu_{1} & \mu_{2} & \mu_{3} & \mu_{3} & \mu_{3} & \mu_{1} & \mu_{2} & \mu_{3} & \mu_{1} & \mu_{2} & \mu_{2} & \mu_{3} & \mu_{1} & \mu_{2} & \mu$

TABLE V (Continued)

				Table VI			
		EQUATIONS OF TH	e Least-Square	S PLANE REFE	rred to Orthog	onal Axes ^a	
Plane		Atoms	a	ь	с	D, Å	S, Å2
1	O(6), O(7	'), O(8), N(9)	0.9733	-0.0436	-0.2252	-0.3698	0.2289×10^{-3}
2	O(10), O((11), O(12), N(13)	0.9224	-0.2520	0.2926	0.6174	0.1637×10^{-2}
3	O(14), O(15), O(16), N(17)	0.0745	0.9437	-0.3223	0.1267	$0.3688 imes 10^{-6}$
4	O(18), O(19), O(20), N(21)	0.2619	0.6970	0.6675	0.4120	0.5445×10^{-4}
			Dil	nedral Angles			
	Planes	Angle, deg	Planes	An	gle, deg	Planes	Angle, deg
	1 and 2	33	1 and 4		86	2 and 4	75
	1 and 3	84	2 and 3		75	3 and 4	63
. 7		\overline{V} \overline{Z} \overline{Z}		7 7 6'	1	f 1	- 4 f

 $a \vec{X} = x + z \cos \beta$; $\vec{Y} = y$; $\vec{Z} = z \sin \beta$. $a \vec{X} + b \vec{Y} + c \vec{Z} = D$. S is the sum of squares of deviation of atoms from the plane; D is the origin to plane distance in angströms. All atoms given equal weight.

for Ce(NO₃)₈(OP(C₆H₅)₈)₈: NO₃, 1304, 1295 (ν_1), 1029 (ν_2), 1493, 1460 (ν_4), 818 (ν_6); PO, 1147. In free OP-(C₆H₅)₈, the PO stretch is at 1195 cm⁻¹.

In these Ce(IV) and Th(IV) complexes, the splitting (into ν_1 and ν_4) of the E' vibration of D_{3h} NO₃⁻ is considerably greater than observed²³⁻²⁵ for a variety of lanthanide(III) complexes. This is expected, but it is worth notice that there is rather little geometrical distortion of the coordinated nitrate groups in the struc-

(24) D. R. Cousins and F. A. Hart, J. Inorg. Nucl. Chem., 29, 2965 (1967).
 (25) P. A. Durham and F. A. Hart, *ibid.*, 31, 145 (1969).

ture of $Ce(NO_3)_4(OP(C_6H_5)_3)_2$, the splitting presumably arising mainly from coupling with Ce–O' vibrations rather than from a difference between the O'–N and N–O'' bond orders (I). The ν_6 mode again shows a greater shift from the free-nitrate position (831 cm⁻¹) than observed^{23–25} in a variety of lanthanide(III) com-

plexes. The frequencies of the ν_1 , ν_4 , and ν_6 absorptions might well be used to assign the oxidation state of a complexed lanthanide or actinide in the unlikely event of its being in doubt. The infrared spectrum of $CsPa(NO_8)_6^{26}$ supports this possibility. In this context, the uranyl ion behaves both in some chemical properties and as regards the infrared spectra of its nitrato complexes²⁷ as if it were $^{-}O^{-}U^{4+}-O^{-}$.

The effect of coordination on the P–O frequency of phosphine oxides has been discussed previously.²⁸ The shift to low frequency is here much greater than observed^{3,23} for lanthanide(III) complexes and similar to that observed² for U(IV), and we attribute the additional shift to delocalization of the P–O π -electron density into the metal 5d (Ce) or 6d (Th) orbitals. (26) D. Brown and P. I. Jones, J. Chem. Soc. A, 733 (1966).

(20) D. Brown and P. I. Jones, J. Chem. Soc. A, 135 (1900).
(27) F. A. Hart and J. E. Newberry, J. Inorg. Nucl. Chem., 28, 1334 (1966).
(28) F. A. Cotton, R. D. Barnes, and E. Bannister, J. Chem. Soc., 2199

(28) F. A. Cotton, R. D. Barnes, and E. Bannister, J. Chem. Soc., 2196 (1960). However, the mean P–O distance of 1.53 Å indicates that this link still possesses considerable double-bond character. It is relevant that the lanthanide contraction increases the P–O frequency along the series La-(III)–Lu(III),²³ suggesting that metal–oxygen π bonding is here unimportant, compared with coupling with the metal–oxygen bond and the inductive effect on the P–O σ bond. Indeed, the generally accepted view that there is little covalent character in lanthanide compounds but moderate covalent character in actinide compounds probably reflects not so much the difference in principal quantum number as the difference in commonly occurring oxidation states.

Acknowledgments.—We wish to thank the National Institutes of Health for Grant GM-08395-09 and NSF for Grant GP-8301. We also wish to thank Montana State University for grants which have made possible the computing required for this study.

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY AND CHEMICAL ENGINEERING AND MATERIALS RESEARCH LABORATORY, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801

A Structural Study of Two Products of the Reaction of Phosphorus Pentachloride with Titanium Tetrachloride. The Crystal and Molecular Structures of Bis(tetrachlorophosphonium) Di-μ-chloro-octachlorodititanate(IV), [PCl₄]₂[Ti₂Cl₁₀], and Tetrachlorophosphonium Tri-μ-chloro-hexachlorodititanate(IV), [PCl₄][Ti₂Cl₉]^{1a}

By T. J. KISTENMACHER^{1b} and G. D. STUCKY*

Received October 31, 1969

Reaction of PCl₅ with TiCl₄ in POCl₅ has led to a crystalline product of empirical formula PTiCl₉. The crystal system is triclinic, space group C_i^{1} - $P\overline{1}$. The cell constants for the reduced cell are a = 8.919 (1) Å, b = 9.474 (1) Å, c = 6.913 (1) Å, $\alpha = 95.90$ (1)°, $\beta = 95.90$ (1)°, and $\gamma = 100.98$ (1)°. The calculated density of 2.34 g/cm³ for 2 PTiCl₉ formula units per cell is to be compared to the observed density of 2.32 ± 0.02 g/cm³. Of 3387 independent reflections collected by counter methods, 2571 were considered to be observed and were used to refine the structure by full-matrix least squares to a conventional R factor of 6.9%. The structure consists of PCl₄⁺ and edge-bridged bioctahedral Ti₂Cl₁₀² ions, the latter located on crystallographic centers of inversion. Reaction of a solution of PCl₈ in SOCl₂ with TiCl₄ in SOCl₂ led to a crystalline product of empirical formula PTi₂Cl₁₃. The crystal system is orthorhombic with possible space groups D_{2k} ¹⁶-Pnma or C_{2v} ⁹- $Pn2_{1a}$. The cell constants are a = 29.126 (12) Å, b = 10.521 (2) Å, and c = 11.514 (3) Å. The calculated density for eight PTi₂Cl₁₃ formula units per cell is 2.22 g/cm³ and the observed density is 2.28 ± 0.04 g/cm³. A total of 1950 counter-collected observed and unobserved reflections were used to refine the structure by full-matrix least squares to a conventional R factor of 7.6%, assuming space group Pnma. Some indication of disorder or lower space group symmetry was found. The structure consists of PCl₄⁺ and Ti₂Cl₉⁻ ions. The anions are an unusual example of face-shared bioctahedra containing first-row transition metal ions in the formal oxidation state +4.

Introduction

Adducts of the type $(PCl_5)_n \cdot mTiCl_4$, where *n* and *m* are integers, were first reported by Weber.² Treatment of a PCl₃-TiCl₄ solution with Cl₂ gas led to the complex PCl₅ · TiCl₄. In a series of experiments³⁻⁵ Groene-

veld studied the reaction of PCl_5 and $TiCl_4$ in $POCl_3$ and $SOCl_2$. Addition of PCl_5 to a solution of $TiCl_4$ in $POCl_3$ produced the complex $PCl_5 \cdot TiCl_4$. Addition of PCl_3 to a solution of $TiCl_4$ in $SOCl_2$ was also reported to give the 1:1 adduct. Conductometric titration of a solution of $TiCl_4$ in $POCl_3$ with PCl_5 in $POCl_3$ indicated complexes of stoichiometry $PCl_5 \cdot TiCl_4$ and $2PCl_5 \cdot TiCl_4$. Only the 1:1 adduct was reported to be isolable. Payne⁶ found that the conductometric titration of $TiCl_4$ in CH_3CN with PCl_5 in CH_3CN (6) D. S. Payne, *ibid.*, **75**, 620 (1956).

^{*} To whom correspondence should be addressed.

^{(1) (}a) This work was supported in part by the Advanced Research Projects Agency under Contract SD-131. (b) Union Carbide Corp. predoctoral fellow.

⁽²⁾ R. Weber, Pogg. Ann., 132, 452 (1867).

⁽³⁾ W. L. Groeneveld, Recl. Trav. Chim. Pays-Bas, 71, 1152 (1952).

⁽⁴⁾ W. L. Groeneveld and A. P. Zuur, ibid., 72, 617 (1953).

⁽⁵⁾ W. L. Groeneveld, ibid., 75, 594 (1956).